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Propagation of partially coherent pulsed beams in the spatiotemporal domain
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A generalized model to describe the spatiotemporal partially coherent pulsed beams is presented. The
corresponding propagation formula is derived by using the partially coherent light theory. Based on this
formula, we obtain a nonstationary generalizedABCD law ~which illustrates the transformation of optical
beams or pulses passing through media! to describe the spatiotemporal behavior of partially coherent Gaussian
pulsed beams. The physical meaning of such generalized pulsed beams is discussed. An example to illustrate
the application of this law is given.
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I. INTRODUCTION

A partially coherent field and its fluctuations have be
extensively investigated. In the previous studies, the parti
coherent light field is mainly stationary and ergodic@1–3#,
i.e., its ensemble averages~the statistical averages! are essen-
tially stationary. For a nonstationary light field, such
pulses, they have been traditionally treated as comple
spatiaotemporally coherent light. For nonstationary lig
fields, the average values, such as correlation funct
G(rW1 ,t1 ;rW2 ,t2), are dependent on the choice of the origin
point of time, and hence depend on two time variables
such cases, we have to use the generalized Wie
Khintchine theorem, which involves two time variables, f
gaining a knowledge of the spectrum of the nonstation
light fields @4,5#. Recently, incoherent spatial solitons a
incoherent light pulses have attracted a lot of attentions
experimental and theoretical studies@6–8#. For partially co-
herent pulses, the random method is often used@8#, where
the phase or amplitude is fluctuated within a range. Anot
way to study the coherence properties of nonstationary l
fields is the spectral approach@5,9–11#, which is a generali-
zation of the coherence theory@1,2# from a stationary case
into a nonstationary case in space-frequency domain. Ba
on the theory of coherence for a nonstationary light fie
Pääkkönen et al. discussed the partially coherent Gauss
light pulses@12#. Such light pulses are composed of partia
correlated frequency components in frequency domain,
in a time domain they are partially coherent. In this paper,
will investigate the partially coherent Gaussian pulsed be
by directly considering the correlation function in the sp
tiotemporal domain, not by the spectral correlation funct
in space-frequency domain. Our method is more conven
to analyze the spatiotemporal behaviors of such pul
beams than those of the spectral approach.

For any practical pulsed beams, they are not only tem
rally confined, but also transversely spatially confined.
this paper, from second-order dispersive equations for pu
beams@13#, we can obtain two differential equations for th
correlation functions of any partially coherent pulsed bea
and their solutions in a spatiotemporal domain. These s
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tions describe the propagation of a partially coherent pul
beam through the second-order dispersive media. Then
present a more general model to characterize partially co
ent pulsed beams in a spatiotemporal domain which may
called Gaussian Schell-model pulsed beams~GSMPBs!. This
model helps us to understand the effects of the transv
spatial coherence and temporal coherence on the evolu
of the pulsed beams. We assume that both the spatial
temporal intensity profiles and the transverse spatial
temporal coherences of pulses are in Gaussian functi
Furthermore, we get an analytical expression of the corr
tion function of spatiotemporally coupled GSMPBs throu
the second-order dispersive media in tensor form, and
call it the generalizedABCD law for partially coherent
Gaussian Schell-model pulsed beams. These results are
ful in a wide range of studies on pulses and their propa
tions, such as characteristics of ultrashort pulses, pulse c
pression, the interaction between pulses with matter,
This model also helps us to get deeper insights into the s
tiotemporal behavior of the pulses. An example to illustra
the application of this generalizedABCD law is given, which
shows the effects of the transverse spatial coherence on
spatial-temporal behavior of the pulsed beam.

II. PROPAGATION FORMULA OF CORRELATION
FUNCTION OF PARTIALLY COHERENT PULSED BEAMS

IN DISPERSIVE MEDIA

First, we consider the spatial-temporal propagation pr
erties of partially coherent pulsed beam. LetE(x,y,z,t) rep-
resents the fluctuated electric field at timet and position
~x,y,z!. It has a well-defined central frequencyv0 and the
corresponding wave number isk05v0 /c:

E~x,y,z,t !5V~x,y,z,t !ei ~v0t2k0z!, ~1!

whereV(x,y,z,t) is the paraxial slowly varying envelope o
the field, which is generally a complex function dependi
on time t and potion~x,y,z!. In a linear dispersive medium
when we take into account up to the second-order dispers
V(x,y,z,t) satisfies the following equation@13#:
©2003 The American Physical Society13-1
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F ]2

]x2
1

]2

]y2GV~x,y,z,t !12ik0F ]

]z
1b8

]

]t
GV~x,y,z,t !

1k0b9
]2

]t2
V~x,y,z,t !50, ~2!

whereb8 is the inverse group velocity, andb9 is the group
velocity dispersion. By taking the variable transforms

j5z,

t5
1

@k0b9#1/2~ t2b8z!, ~3!

and then substituting Eq.~3! into Eq. ~2!, we get

F ]2

]x2 1
]2

]y2 1
]2

]t2GV~x,y,j,t!12ik0

]

]j
V~x,y,j,t!50.

~4!

Taking the complex conjugate of Eq.~4!, and writingx1 , y1 ,
and t1 in place of x, y, and t, respectively, we obtain the
equation

F ]2

]x1
2 1

]2

]y1
2 1

]2

]t1
2GV* ~x1 ,y1 ,j1 ,t1!

22ik0

]

]j1
V* ~x1 ,y1 ,j1 ,t1!50. ~5!

Next we multiply both sides of Eq.~5! by V(x2 ,y2 ,j2 ,t2),
and take the ensemble average of Eq.~5! over the different
05661
realizations of the field. By interchanging the order of t
ensemble average and the differential operators, we ob
the equation

F ]2

]x1
2 1

]2

]y1
2 1

]2

]t1
2GG~x1 ,y1 ,j1 ,t1 ;x2 ,y2 ,j2 ,t2!

22ik0

]

]j1
G~x1 ,y1 ,j1 ,t1 ;x2 ,y2 ,j2 ,t2!50, ~6!

whereG(x1 ,y1 ,j1 ,t1 ;x2 ,y2 ,j2 ,t2) is the second-order cor
relation function defined by

G~x1 ,y1 ,j1 ,t1 ;x2 ,y2 ,j2 ,t2!

5^V1* ~x1 ,y1 ,j1 ,t1!V2~x2 ,y2 ,j2,t2!&, ~7!

where^ & represents the ensemble average. In a similar w
we can derive the equation

F ]2

]x2
2 1

]2

]y2
2 1

]2

]t2
2GG~x1 ,y1 ,j1 ,t1 ;x2 ,y2 ,j2 ,t2!

12ik0

]

]j2
G~x1 ,y1 ,j1 ,t1 ;x2 ,y2 ,j2 ,t2!50. ~8!

Equations~6! and ~8! describe the propagations of any pa
tially coherent pulsed beams through the second-order
persive media. It should be pointed out that both Eqs.~6! and
~8! are more general than the classic Wolf’s equations@2#
that are valid for statistically stationary light fields, while th
present equations are valid for nonstationary fields. At
same time, however, these two equations are more restric
than Wolf’s equations due to the paraxial approximation
our derivation. The integral solution of Eqs.~6! and~8! reads
G~x1 ,y1 ,j1 ,t1 ;x2 ,y2 ,j2 ,t2!5S k0

2p
D 3S 1

det~B̃1B̃2!
D 1/2E E E E E E G0~x10,y10,j10,t10;x20,y20,j20,t20!

3expH 2
ik0

2
@~ r̃10

T B̃1
21Ã1r̃101 r̃1

TD̃1B̃1
21r̃122r̃10

T B̃1
21r̃1!2~ r̃20

T B̃2
21Ã2r̃201 r̃2

TD̃2B̃2
21r̃2

22r̃20
T B̃2

21r̃2!#J d3r̃10d
3r̃20, ~9!

whereÃ1 ,B̃1 ,D̃1 andÃ2 ,B̃2 ,D̃2 are the 333 spatiotemporalABCD matrices of the dispersive optical elements@14,15#, and
G0(x10,y10,j10,t10;x20,y20,j20,t20) is the initial correlation function of pulsed beams. Equation~9! can be rewritten in a
more compact form in terms of tensors as follows:

G~ r̃1; r̃2!5S k0

2p D 3

@det„~21!mB̄…#21/2E E E E E E G0~ r̃10; r̃20!

3expF2 i
k0

2 S r̄0

r̄ D TS B̄21Ā 2B̄21

C̄2D B21Ā D B21D S r̄0

r̄ D Gd3r̃10d
3r̃20, ~10!
3-2
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where

r̄05S r̃10

r̃20
D5S x10

y10

t10

x20

y20

t20

D and r̄5S r̃1

r̃2
D5S x1

y1

t1

x2

y2

t2

D ~11!

represent the initial two arbitrary spatial-temporal points a
the output two arbitrary spatial-temporal points, respective
and m is only related to the dimensions of the spati
temporal pointr̃ , now m53. In Eq. ~10!, we define

Ā5S Ã1 0

0 Ã2
D , B̄5S B̃1 0

0 2B̃2
D , C̄5S C̃1 0

0 2C̃2
D ,

D̄5S D̃1 0

0 D̃2
D . ~12!

Due to the scalar property of the exponential kernel in E
~10!, we can get the following relations:

~B̄21Ā!T5B̄21Ā, ~D̄B̄21!T5D̄B̄21,

C̄2D̄B̄21Ā52~B̄21!T. ~13!

Formula ~10! describes the propagation of the correlati
function between different spatiotemporal points of a
pulsed beam through second-order dispersive media. U
this formula, we can easily get the evolution informati
about the correlation functions of partially coherent sp
tiotemporal pulsed beams.

III. DEFINITION OF PARTIALLY COHERENT GSMPB

As we know, in free space, the light field of a comple
coherent pulsed Gaussian beam without spatiotemporal
pling has the following form:

U~x,y,z,t !5expF2
x21y2

4s I
2 GexpF2

t2

2st
2Gexp@ iv0t#,

~14!

where s I and st are the spot radius and pulse tempo
width of the pulsed Gaussian beam, respectively; andt5t
2z/c is the relative delay time. Herec is the light speed in
vacuum. The definition of the correlation function@1,2# reads

G~x1 ,y1 ,z1 ,t1 ;x2 ,y2 ,z2 ,t2!

5^U* ~x2 ,y2 ,z2 ,t2!U~x1 ,y1 ,z1 ,t1!&. ~15!

Substituting Eq.~14! into Eq. ~15!, the correlation function
between any two spatial-temporal points (x1 ,y1 ,z1 ,t1) and
(x2 ,y2 ,z2 ,t2) in the spatiotemporal domain can be written
05661
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G~x1 ,y1 ,z1 ,t1 ;x2 ,y2 ,z2 ,t2!

5expF2
x1

21y1
2

4s I
2 GexpF2

x2
21y2

2

4s I
2 GexpF2

t1
2

2st
2G

3expF2
t2

2

2st
2Gexp@ iv0~t12t2!# ~16!

Also, by the definition of the complex degree of coheren
@1,2#,

g~x1 ,y1 ,z1 ,t1 ;x2 ,y2 ,z2 ,t2!

5
G~x1 ,y1 ,z1 ,t1 ;x2 ,y2 ,z2 ,t2!

@ I ~x1 ,y1 ,z1 ,t1!I ~x2 ,y2 ,z2 ,t2!#1/2, ~17!

where I (xi ,yi ,zi ,t i)5G(xi ,yi ,zi ,t i ;xi ,yi ,zi ,t i) ( i 51,2)
represents the intensity of pulsed beam, we can get the c
plex degree of the coherence of such coherent pulsed be

g~x1 ,y1 ,z1 ,t1 ;x2 ,y2 ,z2 ,t2!5exp@ iv0~t12t2!#, ~18!

and consequentlyug(x1 ,y1 ,z1 ,t1 ;x2 ,y2 ,z2 ,t2)u51. This in-
dicates that the conventional pulsed Gaussian beam is
coherent between all spatiotemporal points.

In practice, any pulse is not perfectly coherent in bo
space and time. How do we describe this kind of spatiote
poral Gaussian pulsed beams? First, we consider the ca
which the space and time variables of the pulsed beam
separable. We introduce two new parameters to characte
the spatial and temporal coherence of a pulse, and ass
that both spatial coherence and the temporal coherence a
Gaussian. In such a case, there is no coupling between sp
coherence and temporal coherence, so we have the com
degree of the coherence as follows:

g~x1 ,y1 ,z1 ,t1 ;x2 ,y2 ,z2 ,t2!

5expF2
~x12x2!21~y12y2!2

2scs
2 GexpF2

~t12t2!2

2sct
2 G

3exp@ iv0~t12t2!#, ~19!

where scs may be called the transverse spatial cohere
width, andsct may be called the temporal coherence wid
or longitudinal correlation width. In analogy to the form o
Gaussian Schell-model beams~GSMBs! @1,2#, we may call
such pulsed beams Gaussian Schell-model pulsed be
From Eqs.~17! and~19!, we know that the shape~the inten-
sity as a function of space and time! of the pulsed beam is
not changed, therefore we get the generalized correla
function of the pulsed beams with the help of the correlat
function. The result is
3-3
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G~x1 ,y1 ,z1 ,t1 ;x2 ,y2 ,z2 ,t2!5@ I ~x1 ,y1 ,z1 ,t1!I ~x2 ,y2 ,z2 ,t2!#1/2g~x1 ,y2 ,z1 ,t1 ;x2 ,y2 ,z2 ,t2!

5expF2
x1

21y1
2

4s I
2 GexpF2

x2
21y2

2

4s I
2 GexpF2

t1
2

2st
2GexpF2

t2
2

2st
2GexpF2

~x12x2!21~y12y2!2

2scs
2 G

3expF2
~t12t2!2

2sct
2 Gexp@ iv0~t12t2!#. ~20!

The above equation can be rearranged into a more compact form as follows:

G~ r̄ !5expF2
ik0

2
r̄TQ̄21r̄ Gexp@ iv0~t12t2!#, ~21!

where the superscript ‘‘T’’ stands for transpose:

r̄5S r̃1

r̃2
D and r̃ i5S xi

yi

t i

D ~ i 51,2!. ~22!

Q̄21 is a 636 matrix given by

Q̄215S 2
i

2k0
sI

222
i

k0
scs

22, 01 ,
i

k0
scs

22, 01

02 , 2
i

k0
st

222
i

k0
sct

22, 02 ,
i

k0
sct

22

i

k0
scs

22, 01 2
i

2k0
sI

222
i

k0
scs

22, 01

02 ,
i

k0
sct

22 02 , 2
i

k0
st

222
i

k0
sct

22

D , ~23!
ou
a
-
in
n

atial
spa-

tem-
ce
ideal
-
ve-
where

sI
225S s I

22 0

0 s I
22D , scs

225S scs
22 0

0 scs
22D .

Here01 is a 231 zero matrix and02 is a 132 zero matrix,
which indicate that there is no spatiotemporal intensity c
pling and no spatiotemporal coherence coupling as we h
assumed above. We may callQ̄21 the spatiotemporal com
plex pulsed beam parameter matrix. It can describe ma
properties of the pulsed beam. We can extract many qua
05661
-
ve

ly
ti-

ties, such as the temporal width, transverse spot size, sp
coherence, and temporal coherence, etc., from this
tiotemporal complex pulsed beam parameter matrix.

For the more general cases, there always exist spatio
poral coupling including intensity coupling and coheren
coupling, e.g. when a pulsed beam passes through a non
dispersive optical element@14,15#. In order to get the ana
lytic results, we neglect the initial transverse spatial wa
front curvature@16#, the initial chirp coefficient@17#, and the
twisted factor @16,18#. Under such assumptions,Q̄21 be-
comes
Q̄215S 2
i

2k0
sI

222
i

k0
scs

22, q12,
i

k0
scs

22, q14

q21,
2 i

k0
st

222
i

k0
sct

22, q23,
i

k0
sct

22

i

k0
scs

22, q32 2
i

2k0
sI

222
i

k0
scs

22, q34

q41,
i

k0
sct

22 q43, 2
i

k0
st

222
i

k0
sct

22

D , ~24!
3-4
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where sI
22 and scs

22 are all 232 matrices with transpos
symmetry, given by

sI
225S s Ixx

22 s Ixy
22

s Ixy
22 s Iyy

22D , scs
225S scsxx

22 scsxy
22

scsxy
22 scsyy

22 D . ~25!

Where s Ixx and s Iyy are the transverse spot of the puls
beam inx andy directions, respectively;s Ixy is the intensity
coupling betweenx andy variables.scsxx

22 andscsyy
22 are the

transverse coherences in thex andy directions, respectively
scsxy

22 is the coherence coupling betweenx and y variables.
Here the parametersq12, q32, q14, andq34 are 231 nonzero
real matrices, andq21, q23, q41, andq43 are 132 nonzero
real matrices, whose elements depend on the coupling
tween space and time in the pulsed beams. At the same
by the characteristics of the correlation functionG* ( r̃ 1 ; r̃ 2)
5G( r̃ 2 ; r̃ 1), there exist the relationsq125q21

T 5q345q43
T and

q145q41
T 5q325q23

T , and we may call the parametersq12,
q21, q34, andq43 the spatiotemporal intensityself-coupling
at the same spatiotemporal point and the parametersq14,
q41, q23, and q32 the spatiotemporal correlation mutua
coupling between any two different spatiotemporal poin
We may call both the two couplings as the spatial-tempo
coupling in a general case. Equations~21!, ~24!, and ~25!
describe the generalized partially coherent Gaussian Sc
model pulses. We will discuss the propagation behavior
such pulsed beams in the following.

IV. ABCD LAW OF PARTIALLY COHERENT GSMPBs

Now we consider the propagation of partially cohere
GSMPBs through dispersive media. Substituting Eq.~21!
into Eq. ~10!, we can obtain

G~ r̄ !5$det@~Ā1B̄Q̄i
21!#%21/2expF2

ik0

2
r̄TQ̄o

21r̄ G , ~26!

where Q̄i
21 and Q̄o

21 denote the input and output partial
coherent spatial-temporal complex curvature tensor, res
tively. They are related by the following relation:

Q̄o
215~C̄1D̄Q̄i

21!~Ā1B̄Q̄i
21!21. ~27!

During the calculations, we omitted the factor exp@iv0(t1
2t2)# in Eq. ~21! due to the slowly varying condition of Eq
05661
e-
e,

.
l

ll-
f

t

c-

~1!. It should be pointed out that Eqs.~26! and~27! describe
the transformation of the general GSMPBs propagating
dispersive media, and can be used to deal with many rel
problems such as the compression and broadening of p
widths, and spatial spreading of pulses and spatiotemp
coupling. Formula~27! is the nonstationary generalized
ABCD law for nonstationary GSMPBs compared with th
cases for statistically stationary partially coherent bea
@16,19,20#. All previous results are only fitted to the statist
cally stationary fields for partially coherent light beam
@19,20# or to the fully temporal correlated for cohere
Gaussian pulses@14,15,17#. Now our formula connects thes
two limits and can deal with the effects of the transve
spatial coherence and the coherence time at the same
Of course this formula can be reduced to the previous res
for partially coherent light such as GSMBs and anisotro
GSMBs if we let the duration and temporal coherence ti
width of partially coherent GSMPBs be infinity.

In the following, we will give an example to illustrate th
application of Eqs.~26! and~27!. At the same time, we show
the effects of the transverse spatial coherence on the
tiotemporal behavior of the pulsed beam due to the spa
temporal coupling.

V. EXAMPLE

In many situations, we often consider the propagat
from one plane to another perpendicular to the propaga
axis; thus we have the relationsj105j205j0 , j15j25j,
Ã15Ã25Ã, B̃15B̃25B̃, C̃15C̃25C̃, andD̃15D̃25D̃. For
simplicity, we only consider the two-dimension pulsed bea
i.e., only including one transverse direction such asx, and
another longitudinal time scalet. We also consider the sim
plest cases in which the pulsed beam propagates in
space. Therefore, the spatiotemporal matrices of the
space have the following simple forms:

Ã5S 1 0

0 1D , B̃5S B 0

0 0D , C̃5S 0 0

0 0D , D5S 1 0

0 1D .

~28!

Using the above results in the previous sections, in Eq.~24!

Q̄21 is simplified into
Q̄215S 2
i

2k0
s I

222
i

k0
scs

22, q12,
i

k0
scs

22, q14

q12, 2
i

k0
st

222
i

k0
sct

22, q14,
i

k0
sct

22

i

k0
scs

22, q14 2
i

2k0
s I

222
i

k0
scs

22, q12

q14,
i

k0
sct

22 q12,
2 i

k0
st

222
i

k0
sct

22

D , ~29!
3-5
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where all the elements of the matrix are scalar quantities.
First, we will consider that the initial partially coherent pulse has no spatiotemporal coupling, i.e., these parametersq12 and

q14 are zero in Eq.~29!. Then we can get the explicit output expression of such a partially coherent pulse through free
as follows:

G~x1 ,t1 ,x2 ,t2!5G~B!expH 2
k0

2

4k0
21B2s I

22~4scs
221s I

22!
@~2scs

221s I
22!~x1

21x2
2!24scs

22x1x2#J
3expH 2

1

2
@sct

22~t12t2!21st
22~t1

21t1
2!#J expH 2

iBk0s I
22~4scs

221s I
22!~x1

22x2
2!

2@4k0
21B2s I

22~4scs
221s I

22!# J , ~30!
e
e
e

olu-
nt

ling

ch
ed
where

G~B!5
1

S 11
B2s I

22~4scs
221s I

22!

4k0
2 D 1/2.

From the above formula, we can find that for the puls
beam without the initial spatial-temporal coupling, the b
haviors of the spatial and temporal evolutions are indep
ve

05661
d
-
n-

dent of each other. Meanwhile, the transverse spatial ev
tion of such a pulse is similar to that of a partially cohere
Gaussian Schell-model beam in a spatial domain@2#; the
temporal evolution is invariant in such special cases.

Next, we assume that there exist spatiotemporal coup
initially, i.e., these parametersq12 andq14 are nonzero in Eq.
~29!. We can also obtain the following expression for su
partially coherent spatial-temporal correlation coupl
pulsed beams:
G~x1 ,t1 ,x2 ,t2!5G~B!expH 2
k0

2

4k0
21B2s I

22~4scs
221s I

22!
@~2scs

221s I
22!~x1

21x2
2!24scs

22x1x2#J
3expH 2

1

2
@sct

22~t12t2!21st
22~t1

21t1
2!#

2
2k0

2B2scs
22~q121q14!

2~t11t2!21k0
2B2s I

22@~q12t11q14t2!21~q14t11q12t2!2#

4k0
21B2s I

22~4scs
221s I

22! J
3expH 2

2k0
2Bs I

22@q14~t1x22t2x1!1q12~t2x22t1x1!#14k0
2Bscs

22~q121q14!~x22x1!~t12t2!

4k0
21B2s I

22~4scs
221s I

22! J
3expH 2

ik0Bs I
22~4scs

221s I
22!~x1

22x2
2!

2@4k0
21B2s I

22~4scs
221s I

22!# J expH i2k0
3B~q12

2 2q14
2 !~t1

22t1
2!

4k0
21B2s I

22~4scs
221s I

22!J
3expH 2

i4k0
3@q12~t1x11t2x2!1q14~t1x21t2x1!#

4k0
21B2s I

22~4scs
221s I

22! J . ~31!
f
-
ch

ou-
he
er-
From Eq. ~31!, we can obtain the changes of the effecti
transverse spatial radius and the effective temporal width
the pulse in free space:

s I
~eff!5S 4k0

21B2s I
22~4scs

221s I
22!

2k0
2s I

22 D 1/2

, ~32!

st
~eff!5

1

S 1

saddition
2 1

1

st
2D 1/2, ~33!
of
where

saddition
2 5

4k0
21B2s I

22~4scs
221s I

22!

2k0
2B2~4scs

221s I
22!~q121q14!

2 . ~34!

Compared with Eq.~30!, we find that, the spatial behavior o
the coupling pulse is still similar to pulse without spatiotem
poral coupling; but the temporal behavior becomes mu
more complicated due to the effects of spatiotemporal c
pling. Figure 1 shows the differences of the evolution of t
temporal width under the different transverse spatial coh
3-6
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PROPAGATION OF PARTIALLY COHERENT PULSED . . . PHYSICAL REVIEW E67, 056613 ~2003!
encescs for pulsed beams with spatiotemporal coupling.
fact, it has been known that, due to the spatiotemporal c
pling, the change of the temporal width of the pulse w
become very complicated@14,15#. Now in our cases, we
show the effects of the transverse spatial coherence on
temporal width of the pulsed beam due to spatiotempo
coupling, even in free space. If the media are dispersive

FIG. 1. The evolution of the temporal width under differe
transverse spatial coherencesscs for pulsed beams with a spa
tiotemporal coupling.k0559275.3 cm21 ~corresponding tol0

51.06mm), st51.0ms, s I51.0 cm, and q125q1450.5
31023 (ms21) .
-

05661
u-
l

he
al
a-

terials or other optical elements such as a dispersive pr
and a pair of gratings, the behavior of the temporal width
the pulse will be more complicated. But, using Eq.~27!, we
can easily get the related information.

VI. CONCLUSIONS

In this paper, we discussed the propagation of nonstat
ary partially coherent pulsed beams. The propagation form
las for any nonstationary pulsed beams in dispersive me
are derived according to the basic concepts of cohere
theory in a spatiotemporal domain. Then we have introdu
a general model to describe partially coherent Gauss
Schell-model pulsed beams~GSMPBs!, and derived the
propagation formula for the GSMPBs rigorously through d
persive media and obtained the nonstationary general
ABCD law to describe the spatiotemporal behavior of t
partially coherent GSMPBs. This transformation law c
deal with the problems of partially coherent pulses pass
through the complicated optical systems more convenie
and powerfully. A simple application example showing t
effects of spatial coherence on the evolutions of the temp
width of pulsed beam in free space is given.
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