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Propagation of partially coherent pulsed beams in the spatiotemporal domain
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A generalized model to describe the spatiotemporal partially coherent pulsed beams is presented. The
corresponding propagation formula is derived by using the partially coherent light theory. Based on this
formula, we obtain a nonstationary generalizZ8BCD law (which illustrates the transformation of optical
beams or pulses passing through mgthedescribe the spatiotemporal behavior of partially coherent Gaussian
pulsed beams. The physical meaning of such generalized pulsed beams is discussed. An example to illustrate
the application of this law is given.
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[. INTRODUCTION tions describe the propagation of a partially coherent pulsed
beam through the second-order dispersive media. Then we
A partially coherent field and its fluctuations have beenpresent a more general model to characterize partially coher-
extensively investigated. In the previous studies, the partiallgnt pulsed beams in a spatiotemporal domain which may be
coherent light field is mainly stationary and ergoflic-3],  called Gaussian Schell-model pulsed bea@®SMPBS. This
i.e., its ensemble averagébe statistical averag)gare essen- model helps us to understand the effects of the transverse
tially stationary. For a nonstationary light field, such asspatial coherence and temporal coherence on the evolutions
pulses, they have been traditionally treated as completel9f the pulsed beams. We assume that both the spatial and
spatiaotemporally coherent light. For nonstationary lighttemporal intensity profiles and the transverse spatial and
fields, the average values, such as correlation functiontemporal coherences of pulses are in Gaussian functions.
I'(F1,t1;F,,t,), are dependent on the choice of the original Furthermore, we get an analytical expression of the correla-
point of time, and hence depend on two time variables. Irfion function of spatiotemporally coupled GSMPBs through
such cases, we have to use the generalized Wienefbe second-order dispersive media in tensor form, and we
Khintchine theorem, which involves two time variables, for call it the generalizedABCD law for partially coherent
gaining a knowledge of the spectrum of the nonstationary>aussian Schell-model pulsed beams. These results are use-
light fields [4,5]. Recently, incoherent spatial solitons and ful in a wide range of studies on pulses and their propaga-
incoherent light pulses have attracted a lot of attentions ifions, such as characteristics of ultrashort pulses, pulse com-
experimental and theoretical studi&s-8]. For partially co- ~ Pression, the interaction between pulses with matter, etc.
herent pulses, the random method is often ygidwhere This model also helps us to get deeper insights into the spa-
the phase or amplitude is fluctuated within a range. Anothetiotemporal behavior of the pulses. An example to illustrate
way to study the coherence properties of nonstationary lighthe application of this generaliz&BCDlaw is given, which
fields is the spectral approagh,9—11, which is a generali- shows the effects of the transverse spatial coherence on the
zation of the coherence theof¢,2] from a stationary case Spatial-temporal behavior of the pulsed beam.
into a nonstationary case in space-frequency domain. Based

on the theory of coherence for a nonstationary light field, || PROPAGATION FORMULA OF CORRELATION
Paskkonen et al. discussed the partially coherent GaussianFUNCTION OF PARTIALLY COHERENT PULSED BEAMS
light pulseq12]. Such light pulses are composed of partially IN DISPERSIVE MEDIA

correlated frequency components in frequency domain, and ] ) )
in a time domain they are partially coherent. In this paper, we First, we consider the spatial-temporal propagation prop-
will investigate the partially coherent Gaussian pulsed bearfties of partially coherent pulsed beam. Egk,y,z,t) rep-
by direct'y Considering the Corre|ati0n function in the Spa_resents the ﬂuctuated eleCtnC f|e|d at t|m@nd pOSItIOﬂ
tiotemporal domain, not by the spectral correlation function(X.y:2. It has a well-defined central frequenay, and the
in space-frequency domain. Our method is more convenierftorresponding wave number kg= wq/c:
to analyze the spatiotemporal behaviors of such pulsed _
beams than those of the spectral approach. E(xy,z,t)=V(x,y,zt)e (@t ko2, (1)

For any practical pulsed beams, they are not only tempo-
rally confined, but also transversely spatially confined. InwhereV(x,y,z,t) is the paraxial slowly varying envelope of
this paper, from second-order dispersive equations for pulseithe field, which is generally a complex function depending
beamq 13], we can obtain two differential equations for the on timet and potion(x,y,2. In a linear dispersive medium,
correlation functions of any partially coherent pulsed beamsvhen we take into account up to the second-order dispersion,
and their solutions in a spatiotemporal domain. These solu¥(x,y,z,t) satisfies the following equatigri3]:
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whereB' is the inverse group velocity, angl’ is the group
velocity dispersion. By taking the variable transforms

£=z,
_,_1 (t=B'2) ()
= " - z),
" ko812
and then substituting E3) into Eqg.(2), we get
i ” i \ 2ik i \% =
WJF&—szFF (x,y,§,7)+2i Py (x,y,§,7)=
4

Taking the complex conjugate of E@t), and writingx,, Y1,
and 7, in place ofx, y, and 7, respectively, we obtain the
equation

.
o

ﬁ 2
WZ ﬁ_z}v (X1,Y1,61,71)

_2|koa§ V (leylxgerl) 0 (5)

Next we multiply both sides of E(5) by V(X5,Y,,&5,75),
and take the ensemble average of Exj.over the different
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realizations of the field. By interchanging the order of the
ensemble average and the differential operators, we obtain
the equation

W‘F &y2+ﬁ F(X1,Y1:€1,71:%X2,Y2,62,72)
1 1 1

. Jd
_2|koo7_§lr(xlaylvflaTl;X21y2!g217'2):01 (6)

wherel'(X1,Y1,&1,71;%X2,Y2,€,,79) IS the second-order cor-
relation function defined by

F(X1,Y1,61,71:X2,Y2,€2,72)

=(VI(X1,Y1,€1,7)Va(X2,Y2,62,72)),  (7)

where() represents the ensemble average. In a similar way,
we can derive the equation
R L

W‘F F(X1,Y1,61,71:X2,Y2,€2,72)
2

_+ R
ay5 aT§

+2Iko %, F(XlsylvflaTle21y2!g217'2) 0. (8

Equations(6) and (8) describe the propagations of any par-
tially coherent pulsed beams through the second-order dis-
persive media. It should be pointed out that both EGsand

(8) are more general than the classic Wolf’'s equatifls
that are valid for statistically stationary light fields, while the
present equations are valid for nonstationary fields. At the
same time, however, these two equations are more restrictive
than Wolf’'s equations due to the paraxial approximation in
our derivation. The integral solution of Eq$) and(8) reads

3
I'(X1,Y1,61,71:%2,Y2,€2,72) = (2;) (de(B Bz)) JJJJJJ 0(X10,Y10,€10: 7105 X20+ Y201 €20, T20)

Xex;{ [(rloBl YA T10+T1D1B1 Ty — 27 B; 'T1) — (T20B; "AT 20+ T5D,B, ',

- ZF-ZI—O’BE 172)]] d3"r'10d3"r‘20,

9

whereA,,B;,D; andA,,B,,D, are the 3 3 spatiotemporahBCD matrices of the dispersive optical elemefitd,15, and
I'o(X10:Y10,€10, T103 X20:Y20: €20, T20) IS the initial correlation function of pulsed beams. Equati®ncan be rewritten in a

more compact form in terms of tensors as follows:

k 3
[Ty = ( )[de(( 18] 2

o -

—
—

J j I'o(T10:T20)
(T—(’)}mm,

(10
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where I'(X1,Y1,21.115%2,Y2,25,t5)

X10 X1 =exr{ B xi+yi exr{ B X5+Y5 ex;{ 3 T_%}
Y10 Y1 40t 407 207
— 710) 710 — (ﬂ) 71 2
== and r=|."|= (11 T
0 ( I'20 X20 2 X2 X ex;{ — 2—22 exgiwg(T—72)] (16)
Y20 Y2 Tr
720 T2

represent the initial two arbitrary spatial-temporal points an j_lsz(j’ by the definition of the complex degree of coherence

the output two arbitrary spatial-temporal points, respectively,™
and m is only related to the dimensions of the spatial-

temporal poinf, now m=3. In Eq.(10), we define

_ (A, o)\ _ (B, o _ (¢ o
A= _ |, B= _ |, c= -
0 A, 0 -B, 0 -G,
_ (B, ©
D= _ . (12)
0 B,

Y(X1,¥1,21,11:%2,Y2,22,15)

_ ['(X1,Y1,21,t15X2,Y2,22,12)
[1(X1,Y1,21,t1)1(X2,Y2,25,t2) ]2

17

where 1(x;,yi,z,t) =X, yi,z . ti;%,yi,z,t) (1=1,2)
represents the intensity of pulsed beam, we can get the com-
plex degree of the coherence of such coherent pulsed beams

Due to the scalar property of the exponential kernel in Eq.

(10), we can get the following relations:
(B"'A)'=B"'A, (DB )T=DB",

C-DB !A=—(B YT, (13)

Formula (10) describes the propagation of the correlation
function between different spatiotemporal points of any
pulsed beam through second-order dispersive media. Usi
this formula, we can easily get the evolution information
about the correlation functions of partially coherent spa

tiotemporal pulsed beams.

I1l. DEFINITION OF PARTIALLY COHERENT GSMPB

As we know, in free space, the light field of a complete

Y(X1,Y1,21,t1:%X2,Y2,22 1) =exdiwg(7,— 72) ], (18)

and consequentlyy(X1,Y1,21,t1:X2,Y2,22,t5)| = 1. This in-
dicates that the conventional pulsed Gaussian beam is fully
coherent between all spatiotemporal points.
In practice, any pulse is not perfectly coherent in both
space and time. How do we describe this kind of spatiotem-
ral Gaussian pulsed beams? First, we consider the case in
hich the space and time variables of the pulsed beam are

separable. We introduce two new parameters to characterize

the spatial and temporal coherence of a pulse, and assume
that both spatial coherence and the temporal coherence are in
Gaussian. In such a case, there is no coupling between spatial
coherence and temporal coherence, so we have the complex
degree of the coherence as follows:

coherent pulsed Gaussian beam without spatiotemporal cou-

pling has the following form:

x2+y?

40'|2

exgiwgt],

(14

7_2
exp — ——
205

U(x,y,z,t)zex;{—

where o, and o, are the spot radius and pulse temporal

width of the pulsed Gaussian beam, respectively; and
—z/c is the relative delay time. Hereis the light speed in
vacuum. The definition of the correlation functih?2] reads

F(leyl!Zlvtl;x21y21221t2)

=(U*(X2,Y2.,22,t)U(X1,Y1,21,11)). (15

Substituting Eq(14) into Eq. (15), the correlation function
between any two spatial-temporal points, {y;,z;,t;) and

Y(X1,Y1,21,115%2,Y2,25,15)

Cexd — (X1=X2)*+ (Y1~ Y2)? o — (11— 7)°
—¢ 20'5S € 20'5t
Xexr[ia)o(Tl_ Tz)], (19)

where o may be called the transverse spatial coherence
width, ando.; may be called the temporal coherence width
or longitudinal correlation width. In analogy to the form of
Gaussian Schell-model beartGSMBS [1,2], we may call
such pulsed beams Gaussian Schell-model pulsed beams.
From Egs.(17) and(19), we know that the shapghe inten-

sity as a function of space and tinef the pulsed beam is

not changed, therefore we get the generalized correlation
function of the pulsed beams with the help of the correlation

(X5,Y2,2,,t5) in the spatiotemporal domain can be written asfunction. The result is
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T(X1,Y1,21,t11X2,Y2,22,t2) =[1(X1,Y1. 21, 1)1 (X2,Y2, 20, t2) 1Y27(X0,Y2,21 11X, Y2, 22, t)
—exqd — M exd — M exd — i exd — T_g exl — (X1—X2)?+(y1—Y2)?
4ot 4o 202 202

20'%S
(71_7'2)2 .
Xexg — Y exgiwg(T—7)]. (20
ct

The above equation can be rearranged into a more compact form as follows:

F(T5=exr{ - —r Q ﬂexp[l wo(7T1—72) 1, (22
where the superscriptT’ stands for transpose:
¥ Xi
—=(~1 and T,=|Yi| (i=12. (22)
Ty -
I
Q !is a 6x6 matrix given by
L 0 P, 0
2ke 71 ko 7o v ko 7 '
i [ [
0,, =2 _ 2 0,, _ 2
Q= 2 DM 2 o™ 23
; i, i, 0, '
k_oa-CS ! 0, 2_|(0 Tk Ocs 0y
0, i—072 0, i_U*Z i_O.*Z
’ kO ct ’ kO T kO ct
|
where ties, such as the temporal width, transverse spot size, spatial
_2 _2 coherence, and temporal coherence, etc., from this spa-
o 0 o 0 i ;
—o |9 5 [ Tcs tiotemporal complex pulsed beam parameter matrix.
i 0 o2 Pes | o ol For the more general cases, there always exist spatiotem-

poral coupling including intensity coupling and coherence
Here0; is a 2x1 zero matrix and, is a 1X2 zero matrix, coupling, e.g. when a pulsed beam passes through a nonideal
which indicate that there is no spatiotemporal intensity coudispersive optical elemeiifi4,15. In order to get the ana-
pling and no spatiotemporal coherence coupling as we havgtic results, we neglect the initial transverse spatial wave-
assumed above We may Cer the Spat|0temp0ra| com- front CUrVatUrd:lG] the initial Chll’p CoeffICIen{].?] and the
plex pulsed beam parameter matrix. It can describe mainlywisted factor[16,18. Under such assumptlonQ ! be-
properties of the pulsed beam. We can extract many quanteéomes

2—k00'| K O, Qi12, k_oo'cs ! G14
—i i i
O21, k—o(f;z— Ky 0';2, 023, Ky 0';2
Q1= . . . 24
Q - o, . @
k—OO'CS , Q32 2_|(0 [ k_oo'cs ) REZ
i [ [
Qa1 k_oo"‘z Qa3 "k o, - Ko o
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where o 2 and 0.2 are all 2x2 matrices with transpose (1). It should be pointed out that Eq®6) and (27) describe

symmetry, given by the transformation of the general GSMPBs propagating in
Y o . dispersive media, and can be used to deal with many related
o [ 9xx Oixy _5 [ Tesxx OTcsxy problems such as the compression and broadening of pulse
% Tlg2 g2 Pes T\ 2 -2 25 widths, and spatial spreading of pulses and spatiotemporal
Ixy lyy csXy csyy

coupling. Formula(27) is the nonstationary generalized

Where o, and o}y, are the transverse spot of the pulsedABCD law for nonstationary GSMPBs compared with the
beam inx andy directions, respectivelyr,,, is the intensity ~ cases for statistically stationary partially coherent beams

coupling betweerx andy variables.ogszxx and UESZyy are the [16,19,2(): All pre\{ious results are only fitted to Fhe statisti-
cally stationary fields for partially coherent light beams

transverse coherences in thandy directions, respectively;

Ugs%(y is the coherence coupling betwerrandy variables. [19,2(]_ or to the fully temporal correlated for coherent

Here the parametet,, Gsp, Oya, andgay are 2< 1 nonzero Gaus_sufm pulsg44,15,11. pr our formula connects these

real matrices, andy;, Gps, Gy, anddus are 1X2 nonzero two .I|m|ts and can deal with the effec_ts of the transverse

real matrices, whose elements depend on the coupling bgatlal coherence and the coherence time at the. same time.
f course this formula can be reduced to the previous results

or partially coherent light such as GSMBs and anisotropic

tween space and time in the pulsed beams. At the same tim
by the characteristics of the correlation functibf(T, T2) GSMBs if we let the duration and temporal coherence time
width of partially coherent GSMPBs be infinity.

=T'(¥,:F,), there exist the relationg;,= q4,= gz,= Q45 and
In the following, we will give an example to illustrate the

014=0j,=03,=053, and we may call the parametess,,

G21, Gsa, ANz t_he spatiotemp_oral intensityelf-coupling application of Eqs(26) and(27). At the same time, we show

at the same spatiotemporal point and the parameefS  he effects of the transverse spatial coherence on the spa-
Ga1, O23, and gs, the spatiotemporal correlation mutual- joemnoral behavior of the pulsed beam due to the spatial-
coupling between any two different spatiotemporal points emporal coupling

We may call both the two couplings as the spatial-tempora‘i '

coupling in a general case. Equatiofl), (24), and (25)

describe the generalized partially coherent Gaussian Schell- V. EXAMPLE
model pulses. We will discuss the propagation behavior of

such pulsed beams in the following. In many situations, we often consider the propagation

from one plane to another perpendicular to the propagation

axis; thus we have the relatiordgg= &,0= &g, £§1=&,=¢&,

A]_:AZZIK, ’Bl:‘éz:’é, 61:6226, andﬁlzﬁzzf). For

Now we consider the propagation of partially coherentsjmplicity, we only consider the two-dimension pulsed beam,

GSMPBs through dispersive media. Substituting E21)  j.e., only including one transverse direction suchxasnd

into Eg. (10), we can obtain another longitudinal time scale We also consider the sim-
plest cases in which the pulsed beam propagates in free
space. Therefore, the spatiotemporal matrices of the free

ﬂ. (26)  space have the following simple forms:

IV. ABCD LAW OF PARTIALLY COHERENT GSMPBs

iko

F(ﬂ={de((/T+B—Qi‘l)]}‘”2exp[— > 1'Q,

whereQ; * and Q,* denote the input and output partially

coherent spatial-temporal complex curvature tensor, respee _ ( 1 0) B ( B 0) =_ ( 0 O) _ ( 1 0)

tively. They are related by the following relation: 0o 1)’ 0 0/ 0 0/)’ 0 1)
_ - (29
Q, '=(C+DQ ")(A+BQ )", 27

During the calculations, we omitted the factor fixp(r,  YSing the above results in the previous sections, in(E4).
—7)] in Eq. (21) due to the slowly varying condition of Eq. Q! is simplified into

2—k00| k_ogc_sz’ Oi12; k_ooc_sz’ O14
[ i [
2 -2
_ Q12 7" ket Qa4, kg 7t
Q = . . . , (29
) P S !
k—oa'CS , Q14 2k, g, k_oo'cs ' G12
b L
Qa4, Ko Oct Q12; Ko g, Ko Oct
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where all the elements of the matrix are scalar quantities.
First, we will consider that the initial partially coherent pulse has no spatiotemporal coupling, i.e., these pamgypeatets

g4 @re zero in Eq(29). Then we can get the explicit output expression of such a partially coherent pulse through free space
as follows:

ko

4K+ BZ0, (4o 2t 0y )

r(xl,n,x2,72>=e<s>ex;;f [<2<ch+a.2><xi+x§>—4ocszx1xz]]

iBkoo, 2402+ o) 2)(x2—x3) 20
P T 421 B2, 2402t o D] | (30

1 _
Xexp[ — E[Uctz(Tl_ 7'2)2+ o, 2( T%-F Ti)]
S

where dent of each other. Meanwhile, the transverse spatial evolu-
tion of such a pulse is similar to that of a partially coherent
G(B)= — 1 S Gaussian Schelll—m_od_el b(—;-am _in a spatialldonfmh the
B o, (4o to) ) temporal evolution is invariant in such special cases.
( + 4kS Next, we assume that there exist spatiotemporal coupling

initially, i.e., these parametetg, andq,, are nonzero in Eq.
From the above formula, we can find that for the pulsed(29). We can also obtain the following expression for such
beam without the initial spatial-temporal coupling, the be-partially coherent spatial-temporal correlation coupled
haviors of the spatial and temporal evolutions are indepenpulsed beams:

k§
 4kZ+B20, (4o 2+ oy 2)

r(xl,n.XZ,rz):G(B)exp{ [<2ogf+ar2><xi+x§>—4og3x1x2]J

1 _
Xexp{ — E[Uctz(Tl_ 7'2)2+ o, 2( T%-f— Ti)]

_ 2K3B20 X (A1o+ U19)2(T1+ 72) 2+ KGB2 0y *[ (1271 + G1am2) >+ (Urami+ G1272) %]
4k5+B2a, (4o 2+ a) ?)

X exol — 2kSBUF2[q14( T1Xp = ToX1) + Q1o ToXp— T1X1) | +4k380552(q12+ Q14)(Xp—X1) (71— 72)
aks+B20, (4o l+ o, )

oy KB (Boel+ o 0G| | i2KkeB(GE,— R (7~ 7h)
2[4k(2)+ BZUF2(4U(:52+ Urz)] 4kg+ BZO_I*Z(40_C*52+0_I*2)

p{ i4K3[ Qo T1X1+ ToXo) + Q14 TXo szl)]J
X exp — .

4K3+B20, Y(dol+ar?) 3D
|
From Eg.(31), we can obtain the changes of the effectivewhere
transverse spatial radius and the effective temporal width of
the pulse in free space: Y 4k5+B20, A(4o i+ o) ?) (34
addition 2R2 -2 -2 2
. A+ B0 (40 2t o D) | 2 . 2kgB“(40cs + oy “) (U1t 014)
g = 2kgg|—2 ' (32) Compared with Eq(30), we find that, the spatial behavior of
the coupling pulse is still similar to pulse without spatiotem-
1 poral coupling; but the temporal behavior becomes much
o-(fﬁ’= 1 2 (33 more complicated due to the effects of spatiotemporal cou-
( + = pling. Figure 1 shows the differences of the evolution of the
Tadditon  O'7 temporal width under the different transverse spatial coher-

056613-6



PROPAGATION OF PARTIALLY COHERENT PULSED. .. PHYSICAL REVIEW &7, 056613 (2003

terials or other optical elements such as a dispersive prism
) - 0,,=0.01cm and a pair of gratings, the behavior of the temporal width of
g j_'"ﬁjzjg:;zﬂ the pulse will be more complicated. But, using &2j7), we
b A . - g_=1.0cm can easily get the related information.
£ 0.6 : - 6.,=10.0cm
el A \ G =
S 710000 VI. CONCLUSIONS
© i . . . .
s %411 ‘ In this paper, we discussed the propagation of nonstation-
E ary partially coherent pulsed beams. The propagation formu-
= %% las for any nonstationary pulsed beams in dispersive media
are derived according to the basic concepts of coherence
00 theory in a spatiotemporal domain. Then we have introduced
: o o ‘ a general model to describe partially coherent Gaussian
00 00 5000 Schell-model pulsed beam&GSMPBS, and derived the
Propagation Distance B (cm) ¢ P .

propagation formula for the GSMPBSs rigorously through dis-
FIG. 1. The evolution of the temporal width under different Persive media and obtained the nonstationary generalized
transverse spatial coherences, for pulsed beams with a spa- ABCD law to describe the spatiotemporal behavior of the
tiotemporal coupling.k,=59275.3cm? (corresponding to\g partially coherent GSMPBs. This transformation law can
=1.06um), o,=1.0us, o,=10cm, and q;,=0.,=0.5 deal with the problems of partially coherent pulses passing
X1073 (us™Y). through the complicated optical systems more conveniently
and powerfully. A simple application example showing the
enceo. for pulsed beams with spatiotemporal coupling. |neffects of spatial coher_ence on the e\_/olu_tions of the temporal
fact, it has been known that, due to the spatiotemporal cou\’-\”dth of pulsed beam in free space is given.
pling, the change of the temporal width of the pulse will
become very complicateftl4,15. Now in our cases, we
show the effects of the transverse spatial coherence on the This work was supported by FRG from Hong Kong Bap-

temporal width of the pulsed beam due to spatiotemporatlist University and National Natural Science Foundation of
coupling, even in free space. If the media are dispersive mazhina(60078003.
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